Using proton temperature anisotropy as an in-situ diagnostic for solar wind origin

David Stansby¹, Timothy Horbury¹, Lorenzo Matteini² ¹Imperial College London, ²LESIA Paris

- Robustly identifying solar source of in-situ solar wind measurements is still an open problem
- Clear that splitting by speed (slow/fast) does not match

possible solar sources [Stakhiv et al. 2016, D'Amicis et al. 2015, 2016]

Method

- Some 'slow' solar wind has same properties as 'fast' solar wind [Marsch et al. 1981, D'Amicis et al. 2015]
 - Strongly Alfvénic [Bruno et al. 2007]
 - $T_{p\perp}/T_{p\parallel} > 1$ in inner heliosphere [Matteini et al. 2007]
- ... instead of splitting wind by speed, we investigate distribution of $T_{p\perp}/T_{p\parallel}$ and Alfvénicity

Mapping categories to solar sources

- $T_{p\perp}/T_{p\parallel}$ vs. v_{pr} is non-monotinic
- $T_{p\perp}/T_{p\parallel}$ vs. entropy is monotonic

- \therefore use to $T_{p\perp}/T_{p\parallel}$ infer entropy
- Entropy is correlated with heavy ion charge states [Pagel et al. 2004, Stakhiv et al. 2016]

 $T_{p\perp}/T_{p\parallel} \rightarrow Entropy \rightarrow Heavy charge states \rightarrow Solar origin$

 $T_{p\perp}/T_{p\parallel} > 1 \rightarrow Coronal hole wind$ $T_{p\perp}/T_{p\parallel} = 1 \rightarrow \text{non-Coronal hole wind}$

- Alfvénic wind has constant _ mass flux \rightarrow steady state
- Active regions have open flux + significant mass output [Brooks et al. 2015]
- Isotropic + Alfvénic \rightarrow Active region wind
- non-Alfvénic wind has varying mass flux \rightarrow non-steady-state

800

- Much larger Alfvénic fraction (80%) compared to 1 AU (50%)
- $T_{p\perp}/T_{p\parallel}$ is bimodal
- All anisotropic wind is Alfvénic

<u>Split solar wind into 3 categories</u>

Anisotropic

Isotropic + Alfvénic

Isotropic + non-Alfvénic

David Stansby is supported by STFC studentship ST/N504336/1 Acknowledgements Timothy Horbury is supported by STFC grant ST/N000692/1

(Radial 0.50 Some slow wind is small number density structures 0.25 [Sheeley et al. 1997, Viall et al. 2015] 0.00 700 600 300 500 200 400 v_{pr} (km/s) Isotropic + non-Alfvénic (Radial speed) \rightarrow Transient structures

flux)

ass

Suggested categorisation

Anisotropic \rightarrow Coronal holes

Isotropic + Alfvénic \rightarrow Active regions Isotropic + non-Alfvénic \rightarrow Small scale transients

These are testable predictions for Parker Solar Probe & Solar Orbiter with heavy ions & PFSS backmapping